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Abstract

In 3D rendering, shadows provide valuable visual information to viewers, and in-
crease the level of realism in the rendering outcome. Therefore, shadow generation
become a fundamental task in modern real-time rendering. Shadow mapping, one
of the most common shadow generation techniques in real-time rendering, due to
its inherent flaw is not capable of generating aliasing-free shadows. The irregular
Z-Buffer algorithm revealed in 2004 eliminates the resolution mismatch problem in
conventional shadow mapping, but it is not directly supported by the existing graph-
ics hardware and lack of efficient software implementations. With the appearance
of CUDA, the programmability of current graphics hardware has been drastically
improved. It allows developers to leverage the enormous computation horsepower
that resides in the current graphics hardware in a more flexible way.

We provide a complete description to our irregular Z-Buffer based shadow mapping
software implementation on CUDA. The rendering system we built is running com-
pletely on GPUs. It is capable of generating aliasing-free shadows at a throughput
of dozens of million triangles per second.
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1 INTRODUCTION

1.1 Shadows

Figure 1.1. A cube with no shadow

By looking at the illustration above (Figure 1.1), please ask yourself a question:”
How high is the cube from the ground?” Apparently, there is no simple answer,
because it is not possible to tell whether the cube is close to viewers hanging above
the ground or it is actually big and lying on the ground. This is due to the lack of
visual information in the illustration.

Shadows provide visual information such as: shape of the receiver, shape of the
surface of the blocker, relative object position, and light position, which lead to a
more realistic 3D scene. The illustration below (Figure 1.2) would probably make
it easier to answer the question we had.

Therefore, shadow rendering is a very important aspect of 3D rendering. In this
thesis work, we focus on shadow generations in real-time rendering.

1



2 Chapter 1 Introduction

Figure 1.2. A cube with shadow

1.2 Conventional Shadow Mapping

Shadow mapping is one of the most common techniques to generate shadows in
real-time rendering. The algorithm was first introduced by Lance Williams [Wil78].
This approach is very simple and requires two rendering passes. In the first pass, the
depth of the scene is rendered from the light position into a depth buffer (the shadow
map), and then, in the second pass the scene is rendered from the eye position and
compared with the shadow map. When rendering from the eye position, each point
needs to be projected onto the light image plane and the x- and y- coordinate are
used for lookup in the shadow map. The comparison of the point’s depth with the
depth in the shadow map gives a solution to tell if the specific point is in shadow or
not.

1.2.1 Artifacts

Figure 1.3 illustrates how a point is projected onto the light-view image plane and
the depth value used to compare with from the light’s point of view. One can easily
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Figure 1.3. Shadow mapping

tell that the actual point that we want to compare the depth with is not aligned with
the pixel seen from the light position. Thus, the closest pixel position is chosen. The
deviation between the desired sample point position and the regular pixel position
causes resolution mismatch in the generated shadow map, which is visualized as
unwanted artifacts in the later stage (Figure 1.4).

Figure 1.4. Shadow mapping artifacts
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1.3 Artifact Free Shadow Mapping

One attempt to remove artifacts from shadow mapping is to increase the shadow map
resolution. Other approaches have been proposed as well, such as Cascaded Shadow
Maps (CSMs) [Eng06], Perspective Shadow Maps (PSMs) [SD02], and Logarithmic
Perspective Shadow Maps (LogPSMs) [LGQ+08]. All of them tend to minimize the
artifacts, instead of removing the artifacts completely.

To eliminate artifacts, there must be an exact point lookup for each point seen from
the eye space. One possible solution to eliminate the artifacts in shadow mapping
is to find a way to produce a 1:1 map such that each pixel point in the eye space
corresponds to the exact sample point in the light space. Figure 1.5 illustrates that
the pixel points in the light space which need to be rendered are view and geometry
dependent, and thus, not longer distributed uniformly. Because the fixed function
unit on the GPU (i.e., the rasterizer which handles the conversion from vertex data
into pixel data) is not capable of handling irregular points, there is a need to have
software implementations for the irregular approach.

Figure 1.5. Irregular shadow mapping

The new approach to generate artifact-free shadow mapping is somewhat different.
First, the scene is rendered from the eye position to extract the information of all
the sample points. The sample points are then used to render the scene from the
light position, and the irregular shadow map is generated. The last pass renders the
scene from the eye position and utilizes the irregular shadow map to perform exact
lookups for each corresponding point. This algorithm is known as the Irregular
Z-buffer [JMB04] or Alias-Free Shadow Maps [AL04].

Johnson et al. proposed a hardware architectural solution, while Aila et al. outlined
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a hierarchical software implementation on CPUs and extended the basic algorithm
for semi-transparent shadow casters and receivers. In 2008, a GPU implementation
was presented by Sintorn et al. [SEA08] including the functionality of generating
soft shadows. So far a more efficient software implementation of irregular shadow
mapping on GPUs, which can be directly equipped in real-time rendering, is still
anticipated.

1.4 Triangle Rasterization

In real-time rendering, triangles are treated as the basic geometrical primitives, and
our shadow rendering system is based on a triangle rasterization process. Therefore,
it is necessary to put up a brief introduction to triangle rasterization [AM07].

1.4.1 Edge Functions

Figure 1.6. A triangle, 4P0P1P2, and two sample points, S0 and S1, in view
image plane

Since in the scope of this thesis work we are dealing with rasterizations for irregular
sample points, the regular pixels on the screen are replaced with random sample
points on the view image plane (Figure 1.6).

In Figure 1.6, the triangle, 4P0P1P2 is defined by three vertices, P0, P1, and P2,
where Pi = (pix, p

i
y). The edge function through P0 and P1 can be described as:

e(x, y) = −(p1y − p0y)(x− p0x) + (p1x − p0x)(y − p0y) = ax+ by + c. (1.1)

Therefore, for each triangle, all the three edge functions are:
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e0(x, y) = −(p2y − p1y)(x− p1x) + (p2x − p1x)(y − p1y) = a0x+ b0y + c0

e1(x, y) = −(p0y − p2y)(x− p2x) + (p0x − p2x)(y − p2y) = a1x+ b1y + c1

e2(x, y) = −(p1y − p0y)(x− p0x) + (p1x − p0x)(y − p0y) = a2x+ b2y + c2. (1.2)

By using Equation 1.2, we can perform visibility tests on sample points against the
triangle. For example, there are two sample points in Figure 1.6, S0 and S1, where
Si = (six, s

i
y). We can put Si into Equation 1.2 and evaluate all edge functions. If

the values of all edge functions are bigger than zero, the sample point is covered by
the triangle; otherwise it is not.

Figure 1.7. Triangle edge function evaluation

As illustrated in Figure 1.7, for S0 the evaluation results of all three edge functions
are positive, so it is located inside the triangle, meaning the triangle is visible at
this sample point position. For S1, it is not the case. Thus, the triangle cannot be
seen at the position of S1.

1.4.2 Depth Interpolation

In order to transfer the attributes of each vertex consisting the triangle into informa-
tion at the sample point position, we need to perform interpolations so as to obtain
the correct depth value (other attributes as color or texture coordinates is not the
concern of shadow mapping, and therefore will not be discussed).

Barycentric coordinates [AM07] is commonly employed to perform interpolations,
which can be derived from the edge functions we had before:
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ū =
e1(x, y)

2A4

v̄ =
e2(x, y)

2A4

w̄ = 1− ū− v̄, (1.3)

where A4 is the signed area of the triangle which can be calculated as:

A4 =
1

2
((p1x − p0x)(p2y − p0y)− (p2x − p0x)(p1y − p0y)). (1.4)

Assume that the depth value of vertex Pi is di. The depth value at a desired sample
point position, S = (sx, sy), can be calculated with the barycentric coordinates from
Equation 1.3 by using the following equation:

d(x, y) = (1− ū− v̄)d0 + ūd1 + v̄d2 = d0 + ū(d1 − d0) + v̄(d2 − d0). (1.5)

1.5 Rasterization on CUDA

CUDA was introduced by NVIDIA back in 2007 [NVI10]. It is essentially a hetero-
geneous computing platform, which provides APIs that can be used to implement
general-purpose computations on graphics hardware. CUDA reveals huge opportu-
nities for developers to leverage the GFLOPS computational horsepower and massive
amount of parallelism that reside on current graphics hardware. Complex compu-
tation problems can now be solved on GPUs in a fraction of the time required on
CPUs.

A typical rasterization process consists of a large number of individual visibility tests
between a pixel and a triangle. Although rasterization is accelerated by a dedicated
hardware unit on existing graphic hardware, the inherent characteristic of rasteri-
zation shows its potential to be parallelized and adapted onto CUDA programming
model. We intend to seize the opportunity and explore how far our irregular shadow
mapping implementation can achieve in terms of performance on CUDA.



2 ALGORITHM OVERVIEW

In this chapter, we provide a brief introduction to our rasterization based irregular
shadow mapping implementation on CUDA. The outline of our design including
OpenGL rendering passes and various CUDA processing kernels will be unveiled.

Figure 2.1. Algorithm overview

The general processing steps and data flows are illustrated in Figure 2.1. All the
rendering steps shown in the figure are performed each frame, meaning the rasterizer
is able to take on dynamically updated pixel and triangle data and produce correct
rendering outcome accordingly each frame.

The whole system is conceptually partitioned into six parts (in the figure they are
denoted by the blocks filled with light blue). Two OpenGL rendering passes are
required as the first and the last steps separately. All the other four parts are
implemented as CUDA kernels. They are coded in CUDA 3.0 so as to benefit from
the improved interoperability between OpenGL and CUDA. Arrows illustrates the
data flows between different parts, and the blocked text label beside each arrow
shows what kind of data are passed from one part to the other. Triangle data are
extracted from model files and uploaded into the GPU memory during initialization.
All the other intermediate data shown in the figure are pre-allocated on the GPU
at the initial phase of the application, and being updated during each frame. The
data exchange between different parts of the system takes place entirely in the GPU
memory.

8



2.1 1st OpenGL Pass and Point-Reconstruction 9

2.1 1st OpenGL Pass and Point-Reconstruction

The rendering of a single frame starts with the first OpenGL rendering pass, which
generates the depth values of desired pixels. Based on the provided depth data,
pixels are then reconstructed in the point-reconstruction stage, where the world
space 3D coordinates of the pixels seen on the screen are restored. After the world
space coordinates are obtained, the reconstructed pixel points are treated as point or
vertex primitives. They are then transformed into the light-view space and projected
onto the light-view image plane, in the same way as in OpenGL when vertices are
transformed from the world space to the camera space and then projected onto the
camera image plane.

Up until now, the projected pixel points can be seen as sample points on the light-
view image plane. The reason why we use the term ‘sample points’ is because the
distribution of those points is similar to an irregular sampling scheme across the
light-view image plane. The light-view image plane is equivalent to a virtual screen.
The location of each sample point on the virtual screen defines where a visibility
test will be performed, and geometrical information will be converted into pixel
information.

Since the light-view image plane is a virtual screen that does not have a fixed size,
view-port scaling can be omitted. As long as sample points and triangle data are
transformed and projected onto the same image plane in the same way, rasterization
should be working just fine, and visibility tests should be able to generate its correct
results.

Since the light-view image plane, the virtual screen we are working on, does not
have a fixed size and position, there is a need to calculate the exact bounding box
of all the sample points on the plane. We will discuss the purpose of calculating
the bounding box in more detail in the following chapters. Basically, it is used to
build acceleration data structures and eliminate unnecessary computations. As a
part of the point-reconstruction, a parallel reduction is performed to calculate the
exact bounding box of all sample points.

2.2 Point Binning

It is evident that the irregular rasterization process is camera-view dependent, mean-
ing it depends on the number of pixels that we are going to render on the screen and
the angle with which we are looking into the scene. In addition, the rasterization
process is also scene dependent. The larger the number of triangles in the scene
the more potential visibility tests that we have to perform against them. A rough
estimation of the complexity of the irregular rasterization can be formulated as the
number pixels times the number of triangles.

In order to accelerate the process and avoid unnecessary computations, we build
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an acceleration data structure for the sample points: a 2D uniform grid. The con-
struction of the grid is based on the position of each sample point on the light-view
image plane. We evaluate the X- and Y-coordinates of each sample point and put
it into the corresponding cell or bucket it belongs to. A more figurative name of
this procedure is binning, commonly referred as data binning, where data values are
categorized into different bins.

We provide two different methods for point binning: the first one is based on the
atomic operations supported by CUDA (computation capability 1.1); for older hard-
ware where atomic operations are not available, we have another implementation
built upon radix sort. Similar to the particles example in CUDA SDK [Gre08], as
stated in the SDK document, Simon Green also used two approaches to build a uni-
form grid for their particle system: one is based on atomic operation and the other
one is based on radix sort. Our radix sort binning algorithm is more or less the same
as what Simon did for their particles system. Both of us employed the radix sort
algorithm described in [SHG09], but the difference is we are building a 2D uniform
grid on the light-view image plane, and their particle system resides in a 3D uniform
grid. For the atomic operation approach, they did not fully explore the potential
of atomic operations. We manage to utilize the support of atomic operation on the
shared memory (computation capability 1.2 and higher) and drastically improved
the performance so as to make it more efficient than the sorting based one.

2.3 Triangle Culling and Compaction

Geometry primitive culling is a common speedup technique in real-time rendering.
Alike with standard OpenGL rendering pipeline, our irregular shadow map design
is also driven by rasterization. So we can employ the same culling techniques as
in OpenGL, such as back face culling and view frustum culling in our system to
enhance the performance.

Initially, triangles are transformed and projected from the model space onto the
light-view image plane, the same way as we did for the sample points. After that,
the signed area of each triangle is evaluated, during which the sequence of the three
vertices consisting the triangle is determined. If back face culling is enabled, back-
facing triangles, the vertices order of which is clockwise, are culled away. The pre-
calculated bounding box of the sample points determines the region of the virtual
screen on the light-view image plane. Triangles located outside of the bounding box
are of no interest in our rasterization, so they will be marked invalid as well.

After the culling evaluations, triangle data are compacted by a parallel compaction
process, which is primarily a parallel prefix sum [SHG08] plus a data reordering
stage. More specific information regarding triangle culling and compaction is in-
cluded in chapter 4.
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2.4 Irregular Rasterizer

Up until this point, the sample point and triangle data have been trimmed and
packed in a good form, and are ready to be processed by the irregular rasterizer. In
this stage, triangle data are fetched from the global memory, edge equations are set
up, and irregular sample points are traversed and evaluated in a triangle bounding
box traversal fashion.

Depth interpolation is performed whenever a triangle is rasterized on a sample point
position. If the triangle happens to be the shadow caster of the sample point,
meaning it is closer to the light source than the point, the sample point will be
marked as in-shadow in the shadow stencil buffer. The size of the shadow stencil
buffer is equal to the number of pixels we have on the screen. Each pixel on the
screen has its unique in-shadow mark that indicates whether this pixel is in shadow
or not.

In the last step, the second OpenGL rendering pass, a lookup from the shadow
stencil buffer is invoked for each poixel. It checks whether the fragment is in shadow
or not, and computes the correct shading for that fragment.

2.5 Wrap-up

After all these six steps, shadows shall be rendered correctly into the frame buffer,
and eventually be displayed on the screen.

The following chapters, including chapter 3, 4 and 5, work as a more comprehen-
sive description of our irregular shadow mapping design. Depth generation, point-
reconstruction, and parallel reduction will be explained more in-depth in chapter 3.
Chapter 4 will explain a variety of acceleration techniques we have deployed, which
includes point binning, triangle culling and compaction. Chapter 5 will focus on the
implementations of our irregular rasterizer.

Design Specifications

Here is the development environment that we have employed in our design:

• CUDA Version: 3.0

• API: CUDA C

• Hardware: Geforce GTX 260.

For demonstration purpose, the resolution we tested is:
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• Resolution: 512 x 512.

This is parameterized in the design, so it can be adjusted in compile time.



3 POINT-RECONSTRUCTION

As an input to our rasterizer, the irregular sample points need to be reconstructed
from the first standard OpenGL rendering pass. This step is done by: for each pixel
on the screen, we take the pixel position and depth information in the screen space,
apply it with the corresponding transformation matrices to transform the sample
points from the camera image plane back to world space, and then project them
onto the light-view image plane (Figure 3.1). A more in-depth description of our
approach is presented in this chapter.

Figure 3.1. Sample points reconstruction

3.1 Depth Values

In the camera image plane, pixel positions are fairly easy to obtain. It is simply a
matter of shifting the value of the pixel indices on both X- and Y-directions by 0.5.
The extraction of the depth values involves more steps.

3.1.1 Using glReadPixels

One option for extracting the depth values is to use the OpenGL function call,
glReadPixels [Gro08], which returns the pixel data from the frame buffer up-
dated by the first OpenGL rendering pass. When the format parameter is set to
be GL_DEPTH_COMPONENT, glReadPixels returns the depth values from the depth

13
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buffer, which is converted into floating point, and mapped to the range from 0 to 1.

This approach is trivial to implement, but has the following drawback. According
to the OpenGL specification, glReadPixels extracts the data from frame buffer
into the client memory. This means the data is implicitly transferred from the
GPU back to the CPU. If we pack the depth values into a buffer object or a
cudaGraphicsResource (CUDA 3.0), and pass it into a subsequent CUDA ker-
nel, an implicit cudaMemcpy routine is invoked so as to bring them back to the GPU
memory. The unnecessary memory transfer introduces considerable overhead to the
overall performance, so we decided to explore more efficient solutions.

3.1.2 Using Frame Buffer Objects

Another way to extract information from a frame buffer is to create a frame buffer
object (FBO) [Ahn08] and bind it into the OpenGL rendering pipeline. In this
way, instead of being displayed on the screen, the rendering outcome from OpenGL
will be redirected onto the bound frame buffer object, which can be used for other
purposes. We employed an FBO in our design to extract the depth values from
OpenGL.

A frame buffer object is essentially a container of a number of rendering destinations.
There are two types of images that can be attached to FBOs: texture images and
render buffer images. Textures or render buffers can be attached onto the depth
attachment point of FBOs to accommodate the depth values. However, as far as
we have tested, they cannot be accessed by CUDA kernels. We suspect that the
functionality of the FBO extension in OpenGL is implementation dependent, and
the interoperability between FBOs and CUDA is not fully supported at this point.
Therefore, an object attached onto the depth attachment point of an FBO cannot
be used as a cudaGraphicsResource in CUDA.

However, we managed to use the color attachment points on the FBO. Apparently
in this case we have to write a simple shader program to dump the depth values onto
the color channels of the frame buffer. According to the GLSL specification [KBR06],
the special variable gl_FragCoord can be directly used in fragment shader programs
to extract the fragment positions including the depth.

Nevertheless, our solution was slightly different. As shown in Figure 3.2, we have a
vertex shader program that simply applies the model-view-projection transformation
for each vertex, and then the Z- and W-components of the transformed vertices are
passed to the fragment shader. In the fragment shader, the perspective divisions are
performed, and the depth values are mapped to the desired range (from 0 to 1). At
the end of the fragment shader program, the depth values are dumped to the color
channel of the FBO and are ready to be used by the subsequent CUDA kernels.

Although the depth information will be redirected to the color attachment of the
FBO, a depth attachment is still needed for the FBO. The reason is that it facilitates
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Figure 3.2. 1st OpenGL pass and Point-Reconstruction Kernel

the correct functionality of the OpenGL depth test.

3.2 Sample Points’ Reconstruction

The process of the sample points’ reconstruction is no more than a series of vertex
transformations between three different spaces: the screen space, the world space,
and the light space. The CUDA point-reconstruction block in Figure 3.2 illustrates
the process. At the end of the kernel, the projected points are stored into the global
memory.

3.2.1 Memory Access Consideration

We only generate the depth values from OpenGL, and the sample points are re-
constructed in a separated CUDA kernel. It is evident that sample points can be
directly reconstructed by the OpenGL shader program and stored in the FBO. The
reason we let the CUDA kernel handle this is that not only do we want to minimize
the number of times that the point data are accessed, but also we want to reduce
the data size of each access.

As what will be discussed in the following sections, the building of the acceleration
data structure of the point data is dependent on the exact bounding box of all the
sample points. In order to figure out the bounding box, a parallel reduction needs to
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be performed across all sample points. If the points are reconstructed in OpenGL,
two coordinates (X and Y) per point need to be accessed by the subsequent reduction
kernel. In contrast, if OpenGL only generates the depth values, the points can be
reconstructed on-the-fly and be fed to the reduction directly. By combining the
reconstruction with the reduction in the same kernel, the global memory access in
between can be eliminated, and only a depth value per pixel is needed by the kernel.

3.2.2 Practical Details

Here are a few practical tips that we have applied to optimize the point-reconstruction
process.

Two matrices are needed for the transformations: the inversion of the view-projection-
viewport matrix of the camera space, and the view-projection matrix of the light
space. They can be packed in an array and copied into the GPU’s constant mem-
ory. Constant memory is cached, and it is accessible for all CUDA kernels launched
afterward.

Although the homogenization steps are missing in Figure 3.2, they need to be en-
forced right after each matrix multiplication. The homogenization is, however, only
performed on the X- and Y-coordinates, keeping the Z-coordinates in linear space in
order to simplify the depth interpolation in the rasterization stage. The instructions
are optimized by pre-calculating the reciprocal of the W-component after each ma-
trix multiplication and multiplying each coordinate component with the reciprocal
to save costly floating-point division instructions.

3.3 Bounding Box Reduction

After point-reconstruction and transformation, sample points are irregularly dis-
tributed on the light-view image plane, as shown in Figure 3.3.

3.3.1 Why Bounding Box?

The idea of the bounding box is simple but of great importance. There are two
reasons why it is needed. First, the 2D uniform grid of the sample points needs to be
built right inside of the bounding box. The bounding box abstracts the distribution
of the irregular sample points, and it encapsulates all the sample points that need to
be rasterized in a compact rectangular region. Therefore, the 2D grid of the sample
points should be built by dividing up the area of the bounding box uniformly along
both X- and Y-axes. When the size and the position of the bounding box change, the
2D grid is self-adaptive to this change. Thus, a more uniformed point distribution
is maintained.
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Figure 3.3. Sample Points on Light-view Image Plane

The second reason falls onto the triangle data. Because the triangles located com-
pletely outside the bounding box are of no interest for our rasterization, they should
be culled away.

As implied in Figure 3.4, the computation of the bounding box is the process of
finding the minimum and maximum values of the X- and Y-coordinates among all
sample points.

3.3.2 Parallel Reduction

Parallel reduction is a common and powerful GPGPU primitive [OLG+07]. A large
stream input is reduced into a smaller stream or possibly a single element stream
after reduction. It can be used to compute the sum or maximum value of all the
elements in a stream.

As shown in Figure 3.5, parallel reduction is implemented in a tree-based approach
on GPUs [Har07]. In the figure, a max reduction is performed to compute the
maximum value of the input stream. However, on each level, any associative binary
operation can be applied. Since the bounding box of all sample points is our interest,
only min and max operations are concerned.



18 Chapter 3 Point-Reconstruction

Figure 3.4. Bounding Box of Sample Points

Figure 3.5. Parallel Reduction: Max

3.3.3 Using Existing Libraries

There are a number of existing data-parallel algorithm libraries implemented in
CUDA, which can be used in your design to release you from making everything
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from scratch. For example, CUDPP [HOS+] and Thrust [HB] have most common
GPGPU algorithms and primitives well implemented in CUDA including reduction,
prefix scan, and radix sort.

Even though four different min and max values can be computed by separate stan-
dard reduction routines that are supported by the libraries, it is not an efficient
solution in terms of performance. Point data need to be arranged in the way that
it is compatible with the library functions, and compromises have to be made on
redundant global memory accesses.

3.3.4 Customized Reduction Kernel

Figure 3.6. Points Reconstruction and Reduction: Block 0

A customized parallel reduction kernel integrated with the point-reconstruction is
the optimal solution in this stage. First, the reconstructed points are buffered on the
shared memory, and reductions are performed across the buffered points within each
block. Four binary operations (min for X, min for Y, max for X, and max for Y) are
stacked together at each level. Finally, reconstructed points are stored in the global
memory, and each block produces a float4 bounding box of itself (Figure 3.6).

A second reduction stage is needed to gather all the intermediate bounding box data.
As shown in Figure 3.7, the second reduction stage is invoked to compute the exact
bounding box across all blocks. At the same time, according to the desired grid
dimensions, the cell sizes of the uniform grid on X- and Y-directions are calculated
as well.

We followed the guideline discussed by Mark Harris in [Har07] to optimize our
reduction kernels. There are a few crucial techniques that we like to point out.
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Figure 3.7. Reduction Final Stage

Sequential Addressing

Figure 3.8. Parallel Reduction: Interleaved Addressing

The shared memory residing in a streaming multiprocessor (SM) of a CUDA GPU
is divided into 16 banks. Within a half-warp, accesses from different threads to the
same shared memory bank will be serialized, which is called shared memory bank
conflicts. Let us go back and review the shared memory access pattern in Figure 3.5.
For illustration purpose, let us assume that there are only 8 shared memory banks.
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Therefore, a hypothetical but reasonable half-warp size would also be eight. As
illustrated in Figure 3.8, this interleaved memory addressing pattern causes shared
memory bank conflicts on every level of the reduction.

Figure 3.9. Parallel Reduction: Sequential Addressing

One way to address this issue is to enforce sequential addressing (shown in Fig-
ure 3.9). By using sequential addressing, each thread within a half-warp only ac-
cesses its unique shared memory bank, so bank conflicts are eliminated.

Multiple Loads

One may notice that after the first level reduction, half of the threads are idle.
In fact, multiple loads can be issued by each thread at the top level, and binary
operations can be performed on the registers before the results are stored in the
shared memory. In this way, we slightly increased the granularity of each thread,
but the total number of threads is at least halved. The same applies for the second
stage reduction kernel.

Loop Unrolling

Loops introduce considerable instruction overhead to CUDA kernels. Loops are
initially needed to control the iterations through all reduction levels. But as long
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Approach cudppScan Customized Reduction
Item Routine/Kernel Time (µs) Routine/Kernel Time (µs)

1 1st OpenGL 394.48 1st OpenGL 394.48

2 pointRecon. 111.39
pointRecon. &
BBoxReduction

147.04

3 cudppScan×4 348.13
BBoxReduction
FinalStage

7.94

Sum 854.00 549.46

Table 3.1. Point-Reconstruction & Reduction Performance Summary

as the data size handled by each threads block is fixed, the number of iterations is
known. Therefore, loops can be completely unrolled.

Final Performance

Again, we do not intend to reiterate what Mark Harris has covered in his parallel
reduction discussion. As far as we have tested, the points stated above are critical
to achieve a better performance in this stage.

After some tweakings, four depth loads together with point reconstructions are per-
formed at the top level; block sizes are set to 256 to have a better occupancy; loops
are completely unrolled. Finally, the GPU execution time of the two reduction
kernels all-together is 153.89 µs.

3.4 Wrap-up

Figure 3.10. Point-Reconstruction & Reduction Stage

The performance of the point-reconstruction and reduction stage is summarized in
Table 3.1. We used cudppScan to compare with our customized kernel (reduction
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is not yet implemented in CUDPP). The OpenGL rendering time is measured by
a software timer, and the CUDA kernel execution times are taken from the GPU
times measured by the CUDA visual profiler. For simplicity, the resolution is set to
512× 512 in our design, meaning there are 250, 000 sample points which need to be
processed. Although point-reconstruction is independent from the scene, the speed
of the first OpenGL pass does depend on the number of triangles in the scene. For
demonstration purpose, the model we tested here contains around 14, 000 triangles.



4 ACCELERATION TECHNIQUES

In this section, we discuss various techniques that we have applied in our design to
accelerate the access of the sample point data and the triangle data.

4.1 Sample Points Data Structure

In our design, the rasterizer needs to process a quarter million sample points (the
resolution is 512× 512). Each of the sample point has three coordinates, X, Y, and
Z, in floating point. Not considering any other extra information that we might have
to pack into the point data structure, the size of the point data is around 3 MB.

Because sample points are irregularly distributed across the light-view image space,
there is no concrete correlation between the index of the point and its spatial lo-
cation. If no accelerated data structure is applied, for an adequately sized scene of
100 thousand triangles, due to the lack of spatial information each triangle will have
to iterate through all the sample points. If we times the data size of the sample
points by the number of triangles, there are 3 terabyte point data that we have to
access from the global memory. Moreover, between the memory accesses, the com-
putations are heavy. It means all the memory accesses will be dispersed across the
entire rasterization process, and memory access latencies will not be hidden very
well between iterations. This leads to an even worse performance degradation.

Considering the facts stated above, building an accelerated data structure for the
point data is inevitable.

4.1.1 2D Uniform Grid

As we known, rasterization is basically working in two-dimensions, so it is not neces-
sary to adopt any more complicated 3D structure. Because uniform grids are fairly
easy to build and to traverse, we chose to build a 2D uniform grid structure for the
point data.

Figure 4.1 shows how the grid looks like on the light-view image plane. The bounding
box of the sample points is taken and divided uniformly along X- and Y-axes into a
grid. Each individual rectangular region, of which the grid consists, is called a cell
or a fragment. The cell index is arranged in such a order that it is ascending from
the lower left corner to the upper right corner of the grid. The figure shows that the
indices of different grid cells are vectors of size two, but in the real implementation
they are converted to be one-dimensional and stored as unsigned ints.

The points located at different regions of the bounding box are binned to their own

24
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Figure 4.1. 2D Uniform Grid

bucket cells. When a specific part of the grid is desired, only the points belonging to
the desired cells are required. Figure 4.2 shows the basic idea of how the point data
access can be accelerated. When a triangle (shown in green) needs to be rasterized,
we compute the bounding box of the triangle (shown in yellow), and we pick a
number of grid cells that are covered by the triangle bounding box (marked in red);
the points binned to the red cells are required, and the rest are skipped.

After triangles are transformed and projected onto the light-view image plane, for
triangle, 4P0P1P2, its bounding box can be calculated as:

BBoxmin = (min(p0x, p
1
x, p

2
x), min(p0y, p

1
y, p

2
y))

BBoxmax = (max(p0x, p
1
x, p

2
x), max(p0y, p

1
y, p

2
y)). (4.1)

BBoxmin and BBoxmax denote the lower left corner and the upper right corner of
the bounding box. The grid cells covered by the triangle bounding box are:
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Figure 4.2. Triangle Bounding Box Traversal
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)
, f loor
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cellSizey

)]
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cellx and celly are the range of the covered cells on X- and Y-directions respectively.
If we put them together, the complete list of the covered cells denoted as cellcovered
can be expressed as:

cellcovered = [(cellx[0], celly[0]), (cellx[1], celly[0])...(cellx[last], celly[last])]. (4.3)

Similar triangle bounding box traversal approaches have been discussed in [LHLW10]
and [FLB+09], but their works only focused on rasterizations of regular sample
points.
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Figure 4.3. Point Data in 2D Uniform Grid

4.1.2 Point Data Structure in Detail

The 2D uniform grid, i.e., the accelerated data structure that we build for the point
data, was introduced in the previous section. Here we discuss some lower level
details regarding how point data are stored in the GPU memory.

Figure 4.3 visualizes the grid data structure at the point level. P38 stands for
point of index 38, and C0 stands for cell of index 0. The data structure starts
with the points binned to the first cell of the grid, and they are followed by the
points belonging to the second cell. It goes on like this, and ends with the points
of the last cell of the grid. Due to the irregularity of the point distribution, the
cell sizes tend to be different. Despite the fact that the allocated memory region is
conceptually divided into different cell sections, the data can still be arranged in such
a compact way that it does not require extra physical memory space. Please note
that the different rows in Figure 4.3 only represent linear memory continuations of
the previous rows. The whole data structure is actually stored in a continuous linear
memory chunk. For instance, as shown in the figure, P39 and P13 both belong to
C3, and thus, P13 is sitting right next to P30 in the memory address space.

Figure 4.4. Cell Start and End Indices

In order to access the points of a specific cell or fragment, two separate arrays are
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needed to store the start and end indices of different grid cells. Figure 4.4 illustrates
the two indices arrays, which is associated with the previous point data structure
figure. We call them cell start indices array (CSI array) and cell end indices array
(CEI array). Each element of the CSI array is the index of the first point binned
to its corresponding cell. The CEI array contains the exclusive ending positions of
different cells, meaning the end index of cell number 1 is essentially the start index
of cell number 2. The reason why we made the CEI array exclusive is because it
is easier to generate in this way. Once the CSI array is obtained, the CEI array is
given at the same time except the last element that can be easily fixed.

Figure 4.5. Float4 Point Structure

Let us dig into each individual point. Each point has three coordinates in floating
point: X, Y , and Z. One potential arrangement of the point data is to store them
in a float3, but the drawback is that the built in vector type float3 in CUDA is
treated as a structure of array. This means when a thread reads one float3, three
memory transactions will be invoked one after the other to access one float at a
time from three different arrays. In this way, although coalescing is maintained,
only 64 Byte memory transactions are issued (4 Bytes per thread), and memory
bandwidth is not utilized in a good way.

Alternatively, we chose to pad in a forth component and store the point data as
float4s. First of all, float4 is treated as array of structure in CUDA. When one
float4 is being accessed by a thread, two 128 Byte coalescing memory transactions
are issued. Comparing to float3, float4 leads to a better bandwidth utilization
and less memory transactions.

Beside its performance consideration, it turns out that the forth component is ac-
tually needed in our rasterization stage. After the binning process, the point data
are reordered. Due to the fact that the shadow stencil buffer, the output of our
rasterizer, follows the same indexing scheme as the pixels in the screen space, we
need to find a way to get track of the original indices of the reordered points. If
we pad the point data with a forth component containing its original screen space
index, the problem is resolved. The index component is stored as float and will
be cast back to unsigned int whenever a shadow stencil buffer update is required.
Figure 4.5 exemplifies the float4 point data structure.

4.2 Point Binning

We preset two methods to perform the binning of the irregular sample points.
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4.2.1 Radix Sort Based Binning

Hash Calculation and Data Reordering

Figure 4.6. Radix Sort Binning I

The first one is called radix sort binning which, as one can tell from its name, is built
based on the GPU radix sort algorithm described in [SHG09]. Figure 4.6 explains
the first part of the process referred to as hash calculation and data reordering.
During hash calculation and data reordering, the index of the cell, to which each
point belong, is calculated, and point data are reordered accordingly.

In kernel PointHashCalc (stands for point hash value calculation), each thread
fetches one point and computes the cell index it belongs to according to the sample
points bounding box and the sizes of the grid cells generated from the precedent
stage. The hash value is essentially the linear cell index stored as unsigned int.
Overflow is avoided by clamping it to the boundary values. The calculated cell
indices array is treated as the keys in radix sort. An original point indices array is
also generated and then is used as the values in radix sort.

After sorting, the point indices are shuffled by the radix sort kernels in the way that
it is aligned with the sorted cell index array. As shown in Figure 4.7, a point data
reordering kernel is invoked to rearrange the actually point data into the desired
form described in the previous section. The point data are gathered from various
places specified by the sorted point indices, and then stored back to the global
memory in a coalesced way.

The reason that we employed the point index array as an intermediate data structure
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Figure 4.7. Radix Sort Binning II

and then applied an extra data reordering step is because the radix sort implemen-
tation we used only supports 32-bit values. However, comparing with the execution
time of the radix sort, the reordering kernel is still a small fraction.

Cell Indices Generation

As stated in the previous section, cell start and end indices are needed for the grid
traversal. That motivates the second part of the radix sort binning process, where
CSI and CEI arrays are generated.

Figure 4.8. Cell Start and End Indices Generation

As shown in Figure 4.8, each thread loads two elements from the sorted cell indices
array except thread number 0: one from its in-place index and the other one from its
lower next index. Two cell indices are then compared. If the two are different, the
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corresponding cell start and end indices are updated with the index of the thread.
Special cares are taken of for the first and last cells.

Prefix Fill

One may notice that if one cell happens to be empty, meaning no point has been
binned to this cell (cell number 5 in Figure 4.8), the way we described above fail to
generate the cell start and end indices for it. In order to fix this, a customized prefix
scan routine is added to fill up the indices of empty cells. We call it prefix fill.

Figure 4.9. Cell Start and End Indices Filling I

Prefix fill replaces the binary add operation of a prefix sum with the following code:

1: if cellStartIdx[threadIdx] = 0 then
2: cellStartIdx[threadIdx]← cellStartIdx[threadIdx− 1]
3: end if

When the in-place element is 0 or another initial value to mark it as empty, the in-
place element is updated with the value of the left operant of the binary operation.

Apart from this, prefix fill follows exactly the same pattern as in prefix scan. There-
fore, it also consists of three steps or kernels: segmental scan within each block,
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recursive scan across all blocks, and vector addition to compensate the preliminary
segmental scan results. A more figurative interpretation is given in Figure 4.9.

Figure 4.10. Cell Start and End Indices Filling II

As it shows in the figure, a second level scan is needed to propagate the partial scan
outcomes to the global scale. At last, a vector addition step is applied to carry out
the actual compensations. At all levels, a fill-if-empty-otherwise-not rule is enforced.

We did not urge on applying more advanced optimization techniques as described in
[SHG08] but keeping prefix fill in a more or less naive form. This is because prefix
fill works on a relatively small data set (grid width × grid height = 128× 64 in our
design), and it is not the bottleneck of our radix sort binning. One thing worth to
mention is that CSI and CEI arrays should be initially reset each frame to avoid
violations from the previous frame.

Wrap-up

Here, we give a rundown on our radix sort based point binning method. Figure 4.11
illustrates the radix sort binning at kernel level. CUDPP radix sort is abstracted as
a single routine. After sorting, we merged the point data reordering and the pre-
liminary CSI and CEI generation into one kernel, following which prefix fill routine
is invoked to fix the untouched indices.

The performances are summarized in Table 4.1. Kernel execution times are taken
from the GPU times measured by the CUDA visual profiler. The resolution is set
to 512× 512, so the data size of the sample points is 250, 000. Although point dis-
tribution does affect the speed of the radix sort binning, in general the performance
of this method is dictated by the data size of the sample points.
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Figure 4.11. Radix Sort Point Binning

Approach RadixSort Binning
Item Routine/Kernel Time (µs)

1 PointHashCalc 244.35
2 CUDPP:RadixSort 1266.43

3
PointDataReordering &
CellIndexGen

121.63

4 PrefixFill I 12.74
5 PrefixFill II 9.12
6 PrefixFillVecAdd 8.80

Sum 1663.07

Table 4.1. Radix Sort Point Binning Performance Summary

4.2.2 Atomic Operation Based Binning

The second point binning approach that we are going to discuss is based on the
atomic operations supported by CUDA. We start with a naive approach and describe
how it can be improved to be even faster than the radix sort binning.
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A Naive Approach

Figure 4.12. Atomic Binning: Naive I

A naive atomic operation binning is fairly easy to implement which employs atomic
operations only on the global memory.

First, as we did in the radix sort approach, each thread fetches its own point data
and calculates the hash value, which is essentially the cell index of this point. Then
we enter a stage called counting stage (Figure 4.12), where we count for all grid cells
how many points belong to each one of them. A cell counter array is maintained in
the global memory to get track of the number of the points that have been binned
to each cell.

During the counting stage, an atomicAdd is performed by each thread on its cor-
responding cell counter to increase its value by one, implying that there is a new
point has been binned to this specific cell. When multiple threads are accessing
the same cell counter, synchronizations need to be enforced, and this is why atomic
operations are involved. After all the atomic operations are complete, the counting
stage finishes with a cell counter array containing the number of points binned to
each cell.

At this point, point data are left untouched. Therefore, we need to make a transition
from the counter array to the information regarding how the point data can be
reallocated piece by piece. It turns out that the generations of the cell start and
end indices array will guide our way.

So the transition can be made in two steps. First, the cell start indices array can
be generated by applying an exclusive prefix sum on the cell counter array that we
just obtained. And the cell start indices array gives the information of the starting
positions for each cell in the targeted grid structure shown in Figure 4.3. The rest
of the question is how the points should be arranged within each cell section, where
the order of the points does not matter, but each one has to have its unique position.



4.2 Point Binning 35

Instead of starting another round of chaotic atomic operations, we saved the returned
value from each atomic operation during the counter stage in a separate array, and
that value is indeed the unique internal offset for each point within the cell it belongs
to (Figure 4.13). The final offset per point array is produced by offsetting the cell
internal offset of each point with its corresponding cell start index. By now, we are
able to reorder the point data to its desired place.

Figure 4.13. Atomic Binning: Naive II

One optimization can be made for the internal offset per point array (shown in
Figure 4.13). The cell internal offset for each point and the cell index of the point
can both be encoded into 16 bits, and two values can be packed into one 32-bit
unsigned int. This is safe because our grid dimension is 128×64 giving 8191 as the
maximum value of cell indices. In the worst point distribution case we experienced,
the maximum number of points per cell never goes above 10, 000. Therefore, 16-
bit (from 0 to 65535, if unsigned int) is enough to accommodate both values.
By doing this, when the OffsetTheOffset kernel (step 3 in Figure 4.13) is invoked
after the prefix sum, both data are accessed in a more efficient way, and unnecessary
computations are saved.

Point data reordering is the final step of the atomic operation binning, which is
simply done by taking the final offset for each point and reallocate the point data
in a scattered way. After that, point data are rearranged as desired, and CSI and
CEI arrays are ready to be processed by the rasterizer.

The performance of the naive approach is congested by the large number of atomic
operations performed on the global memory. For a resolution of 512×512, a quarter
million atomic operations have to be performed by the CUDA kernel, not mentioning
how many serializations have occurred on the same global memory addresses. The



36 Chapter 4 Acceleration Techniques

way that the atomic operations are performed results in a huge performance drop.

Atomic Operation on Shared Memory

Because the latency of accessing the shared memory is much smaller than that of
accessing the global memory in CUDA, one improvement for the atomic operation
binning can be performing atomic operations first on the shared memory, and then
merge the partial results back to the global memory through a second round of
atomic operations. CUDA devices with computation capability 1.2 or higher support
atomic operations on both shared and global memory.

One challenge is that the size of the shared memory residing in a streaming mul-
tiprocessor (SM) is limited (16KB). Our grid dimension is 128 × 64 that produces
8, 192 4-Byte unsigned ints consuming 8K × 4B = 32KB memory. Therefore, it
is not possible to buffer the whole copy of the cell counter array into one SM, and
they need to be divided into groups — 4 groups in our case (8KB per SM).

Figure 4.14. Atomic Counting on Shared Memory

Figure 4.14 illustrates the modified counting stage of the atomic operation binning.
All the launched thread blocks are divided into 4 groups. Each group is responsible
for a specific subset of the cell counter array, and each block within the same group
buffers the same copy of the subset in its shared memory. Cell counters are assigned
to different groups in a interleaved way so as to achieve a better load balancing.

As shown in the figure, each group will have to go through the entire point data,
and atomicAdd is only performed on the shared memory when a point falls into the
cells assigned to this group. In this way, each group is able to collect a part of the
point distribution information that it is responsible for, and eventually all different
parts are merged from different groups back to the global memory through atomic
operations to form the complete cell counter array.

In the improved counting stage, memory access serializations on the global memory
are replaced with warp serializations on the shared memory. Therefore, latencies
are reduced. What can also be observed from Figure 4.14 is that the total number
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of atomic operations that need to be performed on the global memory becomes the
product of the number of blocks per group and the size of the cell counter array.
This means the number of the global memory atomic operations required is not
dependent the screen resolution anymore.

As stated above, the smaller the group size (the number of thread blocks per group),
the less atomic operations need to be performed on the global memory. On the
other hand, all sample points need to be processed by each group, meaning a quarter
million points are parallelized among the thread blocks belonging to the same group.
Therefore, the bigger the group size, the less points need to be processed by each
block. There is a trade-off between a bigger and a smaller group size. After a
series of tests with different parameter combinations, we found that 4 groups with
32 blocks per group gives the best performance at this stage.

Figure 4.15. Sample Point Offset

Although the counting stage is resolved in a better way, it takes more effort for us
to calculate the right offset for each point, which is needed for the reordering. We
are going to explain this through a concrete example. As shown in Figure 4.15,
point number 6 (P6) was handled by block number 1 (B1), regardless which group
it belongs to. P6 has been binned to cell number 7 (C7). The desired reallocation
position for P6 is shown in the figure. The corresponding global offset of P6 consists
of three parts: cell offset of C7, block offset of B1 within C7, and a block internal
point offset specifically for P6. Thus, for each sample point pi, its global offset oiglobal
can be expressed as:

oiglobal = oicell + oiblock + oiblockInternal. (4.4)

In order to obtain all three offset components, Figure 4.16 illustrates the five steps
involved to calculate the right offset for each point, and they are explained as follow:

1. HashCalc: Hash calculation is performed per point to identify the cell each
point belongs to.
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Figure 4.16. Sample Point Offset Calculation

2. Atomic op on shared mem: The cell counter increment is first performed on
the shared memory. We store the returned value of the atomic operation in a
separate array and label it as block internal offset, which is the block internal
offset for the point within the cell it belongs to. Then the hash value (cell
index of the point) and the block internal offset are encoded into a 32-bit
unsigned int and stored in the global memory.

3. Atomic op on global mem: The value of the shared memory counter is merged
onto the global memory counter, and the old value of the global memory
counter is swapped back to the same shared memory location. The value that
we got back from the global memory is essentially the block offset within the
cell represented by the counter. Finally, the block offset array is dumped to
the global memory.

4. Prefix sum on global mem: A prefix sum is performed on the cell counter
array formed on the global memory to generate the cell start indices array.

5. Offset accumulation: The block internal offset array generated in step 2 is
fetched and decoded. Then the block internal offset is accumulated with the
block offset (from step 3) and the corresponding cell start index (from step 4).
The sum gives the correct global offset for each point.
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The rest of the binning can be directly inherited from the naive approach, so there
is no need to reiterate.

Wrap-up

The performances of the atomic operation based binning is summarized in Table 4.2.
Again, kernel execution times are taken from the GPU times measured by the CUDA
visual profiler. Although load balancing techniques are applied, the atomic operation
based binning is indeed view dependent. The performance varies from frame to
frame, but the fluctuation is still tolerable. The execution times listed in the table
is tested with a relatively small scene which contains around 14K triangles. Due to
the fact that smaller scenes tend to have worse point distributions, the performance
figure listed in the table below is more of a conservative number. In most cases, a
better performance can be expected.

Approach Atomic Op. Binning
Item Routine/Kernel Time (µs)

1
HashCalc & AtomicCount-
ing

503.01

2 CUDPP:Scan 29.66
3 PointDataReordering 339.97

Sum 968.67

Table 4.2. Atomic Operation Point Binning Performance Summary

4.3 Triangle Data Structure

4.3.1 Acceleration Data Structure Consideration

Thanks to the revolution of GPGPU, the programmability of modern GPUs has
been fundamentally ameliorated. In the last few years, we have seen novel algo-
rithms proposed for constructing geometry acceleration data structures on graphics
hardware. K. Zhou introduced the first real-time kd-tree construction algorithm on
GPUs [ZHWG08]; C. Lauterbach et al. presented a fast BVH construction method
on GPUs [LGS+09]; A real-time uniform grids construction algorithm was described
by J. Kalojanov [KS09].

Those methods work quite well with more advanced rendering techniques like ray
tracing, but are they really suitable for our rasterizer? It turns out that they are
still too expensive to use. One performance figure can be observed from [LGS+09].
For the Sibenik model (82K triangles), it takes around 30 ms to construct the BVH
on GPUs.
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Even though irregular shadow mapping can be seen as a trimmed-down version
of ray tracing, it only generates shadows, a small part of the overall rendering
outcome. We are not inclined to follow the same path as many did on GPU ray
tracing, because we are only concerned about shadow generations. Our algorithm
should be able to be integrated with the standard rasterization based rendering
pipeline, so it can be used as a replacement for traditional shadow mappings under
certain circumstances. If our design has the same or similar complexity as GPU
ray tracing, people would not even consider using it. They can either go for ray
tracing which gives more realistic rendering effects including shadows, or stick with
the existing real-time shadow generation algorithms where they can still make a
satisfactory balance between the quality and the speed. Therefore, our irregular
rasterizer should be kept as simple as possible and be affordable for even slightly
older hardware generations. Towards the end, we decided not to use acceleration
data structures at triangle level.

4.3.2 Triangle Data Structure in Detail

Figure 4.17. Triangle Data Structure of Array

In order to achieve a better throughput when accessing the triangle data from the
global memory, the triangle array is arranged as a float2 structure of array (shown
in Figure 4.17). T0 stands for triangle number 0 and X0 is the X-coordinate of the
first vertex of T0. Loading a float2 per thread within a warp is associated with a
128-Byte coalescing memory transaction in CUDA, which is the biggest data chunk
that can be handled by one memory transaction. Triangle data are stored in five
float2 arrays in an interleaved way. Since there are only nine floats of a triangle,
we pad a dummy floating point value together with the Z-coordinate of the third
vertex in the last float2 array.
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4.4 Triangle Culling and Compaction

4.4.1 Why Triangle Culling and Compaction?

Triangle culling is important not only because unnecessary computations can be
excluded from the rasterization stage, but also it contributes to load balancing. After
we cull away the back-facing triangles and the triangles that are located outside
of the sample points bounding box, the valid triangles left are most likely filling
up the whole bounding box area, meaning the less the triangles left, the bigger
they are on the light-view image plane. As what we will discuss in chapter 5,
bigger triangles lead to performance drops in the rasterization stage. In order to
maintain a satisfactory performance, more parallelism needs to be explored for each
triangle. So if triangle data can be filtered, compacted, and then passed onto the
rasterization stage, the rasterizer can be dynamically configured to deploy a larger
number of threads working on the same triangle, and thousands of unwanted threads
are prevented from being launched and scheduled. Triangle culling and compaction
result in a significant performance enhancement in the rasterization stage.

4.4.2 Triangle Culling

Our irregular rasterizer is highly customized to generate shadow information. There-
fore, as long as it produces the correct shadow, irrelevant triangle data can be filtered
before being streamed into the rasterizer. If objects in the scene are modeled as en-
closed objects, from the light point of view only front-facing triangles are needed to
determine whether the object is a shadow occluder or not. So back-facing triangles
can be culled away. By doing this, we could roughly halve the number of triangles
that need to be processed during rasterization.

Back-face culling is done by evaluating the signed area of the triangle after the edge
equation setup. If the signed area of the candidate triangle is smaller than zero, it
will be culled away.

The irregular rasterization is only happening within the region of the sample points’
bounding box. Thus, triangles that are located outside of the bounding box can be
ignored and culled as well.

The triangle culling is done by evaluating each triangle against the culling rules
described above, and the evaluation results are written on the validation flag array
(Figure 4.18), where valid triangles are marked as 1s, and invalid ones are marked
as 0s.

A further investigation on this direction is that only the occluders are actually
required for shadow generations. By only sending the triangle data of the potential
occluders to the rasterizer, the shadows on the receiver and even the self-shadows
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on the occluders themselves can be maintained correctly. That gives the chance for
us to further reduce the size of triangle data that need to be processed each frame,
and it does not introduce potential artifacts into the rendering outcome. What we
will also realize in chapter 7 is that it actually causes artifacts if we rasterize the
triangle data of the receivers.

4.4.3 Triangle Data Compaction

Figure 4.18. Triangle Culling and Compaction

The compaction process is driven by a prefix sum routine. We employed the CUDPP
scan library function in this stage, which was implemented based on the parallel
prefix sum algorithm described by S. Sengupta [SHG08].

The triangle compaction starts with applying an exclusive prefix sum on the vali-
dation flag array generated by the culling step (Figure 4.18). After the prefix sum,
the validation flag array becomes the reallocation offset list for the triangles. Then
the reordering kernel is invoked to fetch all the triangle data and evaluate their
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illegibilities again. Data reallocations are only performed on the valid triangles to
the positions indicated by the offset list. After the three steps shown in Figure 4.18,
triangle data are filtered and compacted as desired.

4.4.4 Wrap-up

Figure 4.18 also summarizes the triangle culling and compaction stage at kernel level.
Apparently, the performance of this stage is dependent on the size of the triangle
data and the camera-view angle. The performance figure shown in Table 4.3 was a
testing result with a model containing 14K triangles. Although the size of the tested
model is small, the overhead introduced by the triangle culling and compaction stage
is minor.

Approach Atomic Op. Binning
Item Routine/Kernel Time (µs)

1 TrisCulling 19.14
2 CUDPP:Scan 31.30
3 TrisReordering 11.58

Sum 62.02

Table 4.3. Triangle Culling and Compaction Performance Summary



5 TRIANGLE RASTERIZATION

In this chapter, two different triangle rasterization algorithms are going to be de-
scribed. In CUDA, we always talk about threads, half-warps, warps, or blocks, but
this report will stick to something more abstract, which is called a ‘unit’. A unit is
a group of threads that works together. It could be of any size as long as the block
dimension limitation is not violated.

Basically we divide the thread block into a number of units that consists of a few
warps or just a few threads. The size of the unit (the number of threads per unit)
and the number of units per block are called unit configurations. The rasterization
computation of a single triangle is going to be parallelized among a specific unit.
CUDA kernels could then be launched with different unit configurations, so that it is
possible to investigate the best unit configurations in terms of the speed to rasterize
triangles.

Both algorithms employ this methodology, but the difference is in how they traverse
over the triangles and the fragments of the sample point grid. Later in this report,
these two algorithms are referred as Kernel1 for the first algorithm and Kernel2

for the second one.

5.1 Kernel 1

(a) One Unit Per Triangle (b) BBox Traversal Per Unit

Figure 5.1. Kernel1

Kernel1 is built on the basis of one unit per triangle (Figure 5.1a). Each unit fetches
one unique triangle from the triangle stream, set up the edge equations, and com-
putes the bounding box of the triangle. The bounding box serves as an acceleration

44
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technique to reduce the number of points that need to be processed. Figure 5.1b
illustrates the fragment regions covered by the four triangles being handled by four
different units.

5.1.1 Fragment Loop

Figure 5.2. Kernel1 Fragment Loop

After the fragment region covered by the triangle is computed according to the
bounding box of the triangle, each unit in kernel1 will then go through the region
one fragment after another in a nested loop first along the X-axis and then the
Y-axis. This loop is called a fragment loop.

Within the fragment loop, the sample points belonging to a specific fragment/cell
are accessed according to the associated cell start and end indices generated in
the binning stage. The points are parallelized across the entire unit, meaning each
thread will fetch its own point and rasterize the point against the same triangle. Due
to the irregularity of the point distribution, sometimes not all the threads within
the same unit are utilized. If the number of the points binned to the same fragment
is larger than the size of the unit, they will be serialized within the iteration of the
fragment loop.

Along the X-axis, the sample points belonging to two adjacent fragments are located
contiguously in the global memory, so they do not need to be processed by two
separate iterations. From another perspective, along the X-axis, the end index of
any cell is the start index of the next one. Therefore, the whole fragment line along
the X-axis can be accessed by only referencing the start index of the first cell and
the end index of the last cell. In other words, each fragment line along the X-axis
can be treated as a big fragment (Figure 5.2).

In kernel1, the fragment loop is only performed along the Y-axis, and each fragment
line long the X-axis is parallelized across the unit. In this way, the references to
the CSI and CEI arrays are minimized, and each unit is better utilized during each
iteration. The detail of the rasterization follows the same mathematics described in
chapter 1.
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5.2 Kernel 2

(a) One Unit Per Fragment Set (b) BBox Traversal Per Unit

Figure 5.3. Kernel2

Kernel2 follows a slightly different idea. Kernel1 tends to explore the parallelization
of the triangle stream, while Kernel2 attempts to parallelize the fragment executions
for each triangle. In kernel2, all sample point fragments are divided into groups,
and each fragment group is assigned to a specific unit. Each unit will loop over all
triangles and only process the fragments that it is responsible for (Figure 5.3a).

As shown in Figure 5.3b, fragments are divided into different groups, and each
fragment is marked with the color representing its group identity. Each unit iterates
through the entire triangle stream in a loop. When rasterizing one triangle, the
triangle bounding box and the fragment region covered by the bounding box is
computed the same way as in kernel1, but instead of looping over the entire region,
each unit only accesses the fragments of its own. In kernel2, the rasterization
process of each triangle is spread among different units.

In order to avoid the overhead of calculating the edge equations and bounding box
multiple times for the same triangle, the triangle data are preprocessed in the culling
and compaction stage where related triangle information are calculated beforehand.

5.2.1 Load Balancing Scheme

Figure 5.4 illustrates how two different schemes can be used to spread out the frag-
ments among different units. The hierarchical scheme serves as a counterexample
where fragments located close to each other are grouped together. In this way, un-
balanced triangle distribution would cause unbalanced workloads between different
units, which violates the design intent of kernel2. The interleaved scheme realizes
what we are trying to achieve in the design of kernel2. The fragments covered by
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(a) Hierarchical (b) Interleaved

Figure 5.4. Fragment Distribution Schemes

each triangle are averagely distributed among the units, regardless of the size and
the position of the triangle. One should be aware that although the fragments are
distributed in a balanced way, the point distribution is still inherently unbalanced.

5.2.2 Fragment Loop

Figure 5.5. Kernel 2 Fragment Loop

In kernel2, the fragment loop is more of a brute-force approach. The desired frag-
ments are not located next to each other in the global memory anymore. Therefore,
each unit will have to access one fragment at a time along both the X- and Y-axes
(Figure 5.5).
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(a) Kernel 1 (b) Kernel 2

Figure 5.6. Fragment Fetch Per Line

(a) Original (b) Shuffled

Figure 5.7. Better Fragments Arrangment

5.2.3 Future Implementation

As we known, kernel1 is congested by the biggest triangle. The bigger the triangle,
the more fragments it covers, and the longer the fragment loop. Kernel2 provides
a static solution to average out the workload of each triangle across the entire chip,
but the overheads are impossible to neglect. Here we discuss some potential opti-
mizations that can be applied to kernel2 so as to improve its performance.

Both kernels are constructed with fragment loops. The fragments/cells of the sam-
ple point grid are heavily referenced during rasterization. The way that the sample
point fragments are traversed differentiates the performances between different ras-
terization kernels. Comparing to kernel2, the fragment traversal is more efficient in
kernel1: less references to the CSI and CEI arrays, bigger batch size when fetching
the points, and smaller loop overhead (Figure 5.6).

However, as shown in Figure 5.7, the point binning stage can be modified in such way
that it facilitates the same fragment access pattern for kernel2 as what is available
for kernel1. Instead of reallocating the point data according to its spatial location,
the sample points belonging to the fragment group are put right next to each other
preferably along the X-axis. This modification would accelerate the fragment loop
inside kernel2.
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In addition, the triangle data can be binned to the same 2D uniform grid that we
built for the sample points. By doing this, the triangle loop overhead in kernel2 is
to some extent alleviated.

5.3 Point Loop

Figure 5.8. Sample Point Loop

Within each iteration of the fragment loop, a point loop is performed. Because each
unit consists of a number of threads, each thread participates in fetching the points
in the fragment line and performing per pixel computations on them. Figure 5.8
illustrates the computation of one fragment line where the unit length is four. One
observation to be made is the repetition of the Thread ID. If the number of points
located inside the fragment line is bigger than the unit size, all threads need to
iterate over this point set.

5.4 Per Pixel Computation

At the lowest level of the loop hierarchy of the rasterization kernel, per pixel com-
putations are performed by each thread. Each per pixel computation carries out
the actually rasterization computation of one sample point against one triangle. As
described in chapter 1, first the visibility test is performed to check if the point is
inside the triangle. If so, the depth value for the triangle is then interpolated and
compared to the depth of the point. And if this point is in shadow, the thread
writes 0 to the shadow stencil buffer at the location pointed by the original index
component of the point data.

The shadow stencil buffer, which is actually a texture, will then be used in the last
rendering pass. In the last rendering pass, directional light components are applied
to the pixels which are not in shadow, and only ambient light is applied to the pixels
in shadow. The shadow stencil buffer needs to be reset to its initial values at the
beginning of each frame, which is 1 in our case indicating no shadow is detected.
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Figure 5.9. Shadow Stencil Update

Figure 5.9 illustrates the case where the same fragment is being processed by two
different units for two different triangles. This occurrence only exists in kernel1,
because, in kernel2, each fragment is always taken care of by a specific unit. The
unit marked in red needs to update three positions in the shadow stencil buffer,
while the unit marked in black only needs to perform one write. The update of
the shadow stencil buffer is performed in a scattered way, which may lead to a
performance degradation when the larger area of the screen is in shadow. The green
mark in Figure 5.9 reveals the fact that the same stencil value can be updated by
different units. In this case, synchronization is not required, because the shadow
stencil buffer is always updated with the same value.

5.4.1 Future Implementation

As mentioned earlier, per pixel computations involve a large number of scattered
writes if shadows are detected. One possible fix for this is to use another intermediate
shadow stencil buffer. The intermediate buffer has the same size as the shadow
stencil buffer but with a different ordering scheme. Each element in the intermediate
buffer is indeed the shadow stencil value for each point, but they are arranged in
the same order as the binned point data. Therefore, the update of the intermediate
buffer follows the same pattern as the sample points fetching, which is coalesced
within each unit.

As shown in Figure 5.10, after all triangles are rasterized, the shadow stencil values
will then be reshuffled from the intermediate buffer to the shadow stencil buffer in
its desired order. In this way, scattered writes are minimized.
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Figure 5.10. Synchronization Before Shadow Stencil Update

5.5 Execution Time Analysis

In order to understand the differences between the two rasterization kernels, please
consider the follow analysis. Assume that we always have enough processors to
execute the kernel, so all units are executed in parallel. To put aside the impact
of the point distribution, assume that it always takes the same amount of time to
execute one fragment.

The execution time of the kernel is dictated by the unit that takes the longest time
to execute. For kernel1 and kernel2, the execution times can be expressed as:

f i : the number of fragments for triangle i.

tfrag : the time to execute one fragment.

n : the number of triangles

m : the number of units

Tkernel1 exec : the execution time of kernel1

Tkernel2 exec : the execution time of kernel2

Tkernel1 exec ≈ tfrag ×max(f 1, f 2, f 3, .., fn)

Tkernel2 exec ≈
tfrag
m
×

n∑
i=1

f i. (5.1)
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A few observations can be made from Equation 5.1. If all the triangles are more or
less of the same size, and if we can launch enough units, then the execution times
of kernel1 and kernel2 should be the same. But the number of units that can
be launched is associated with the number of groups we divide the fragments into,
which cannot exceed the grid dimension. For most cases, it is a bad idea to assign
just one fragment to each unit, and the grid dimension should be kept at a certain
level. Therefore, m is normally smaller than n. In other words, if triangles are of
equal sizes, kernel1 is faster.

On the other hand, if the sizes of the triangles are terribly unbalanced, load balancing
comes into the picture. There are cases where the execution time of kernel2 could
be even smaller than that of kernel1.

One may notice that the triangle access and process time is not included in Equa-
tion 5.1. So we can add these into the equations:

ttri : the time to fetch and process one triangle

Tkernel1 exec ≈ tfrag ×max(f 1, f 2, f 3, .., fn) + ttri

Tkernel2 exec ≈
tfrag
m
×

n∑
i=1

f i + n× ttri. (5.2)

From equation 5.2, we may realize another overhead of kernel2 introduced by the
triangle loop.

5.6 Performance Analysis

In this section, two main aspects that impact the performance of our rasterization
kernel will be investigated. The first aspect is how the performance is affected by the
number of triangles that need to be processed, and the second one is the influence
of the point distribution.

5.6.1 Number of Triangles

Figure 5.11 compares the kernel performances when different number of triangles are
processed. The comparison is made from the same view angle and with the same
triangle data. When processing a large number of triangles, kernel1 has better
performances than kernel2. This result is accordant with the analysis we made in
the previous section.
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5.6.2 Point Distribution

In Figure 5.12 and Figure 5.13, the same scene are rendered from two different
camera positions. The yellow dots in Figure 5.12a and Figure 5.13a represent the
reconstructed irregular sample points from the light point of view. The camera
position of Figure 5.12 results in a more uniform sample point distribution across
the fragments, while Figure 5.13b illustrates a very unbalanced point distribution.
Beside the fragment distribution, the unbalanced point distribution adds up another
layer onto the unbalanced workload between different units.

Table 5.1 shows the performance impacts of the two different point distributions il-
lustrated in the figures. Clearly the point distribution is associated with the camera-
view, and the performance is effected from frame to frame.

Table 5.1. Performance Comparison

Point Distribution Kernel 1 Kernel 2
View 1 (Figure 5.12) 490 fps 379 fps
View 2 (Figure 5.13) 190 fps 90 fps

5.6.3 Unit configuration

The kernels are developed to make use of dynamic unit configurations. Thus, the
number of threads that participate in the process of one triangle can be changed.
This is more of a compensation for the irregularity of the point data structure and
the unbalanced workload between the units.

In Figure 5.14, we compared a number of unit configurations when rendering the
same scene. Performance figures are collected from different camera-views and with
different triangle numbers. The curves drawn in different colors represent the per-
formance trends of four different unit sizes. When the triangle number is smaller
than 5000, the unit size of 256 gives the best performance. For larger triangle
numbers, the unit size of 64 gives the best performance. Therefore, different unit
configurations should be chosen for different cases.

Furthermore, through the investigations we made, the unit configuration switching
point is different from scene to scene. It does not only depend on the triangle number
but also the point distribution. Therefore, it needs to be further investigated so as
to make the dynamic unit configuration more accurate.

Besides, our solution is to run a number of tests for the scene we are going to render,
and pick the best unit configuration for this specific scene.
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Figure 5.11. Triangle Number Impact



5.6 Performance Analysis 55

(a) Light View

(b) Sample Points Grid Distribution

Figure 5.12. Averaged Points Distribution



56 Chapter 5 Triangle Rasterization

(a) Light View

(b) Sample Points Grid Distribution

Figure 5.13. Unbalanced Points Distribution
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Figure 5.14. Unit Configuration



6 RESULTS

We have gone through all the different parts of our irregular shadow mapping design
on CUDA. Here, we extend our discussion to a more generalized scope and conclude
our work from a few different perspectives. First, we discuss the issues we have
encountered and their proposed solutions. This is followed by the results on shadow
quality and performance figures. Finally, we will have a few words on the future
prospection of our work.

6.1 Artifacts

Figure 6.1. Artifacts

Conceptually, the irregular Z-Buffer algorithm does not introduce artifacts, but in a
real implementation it is not really the case. Figure 6.1 shows the artifacts generated
by our irregular rasterizer before any optimization has been made. Unexpected black
dots appear on the geometry surfaces where no shadow should exist.
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6.1.1 Floating Point Precision Error

We suspect that this is caused by the single precision floating point errors. In the
world space, the irregular sample points should be lying right on the triangle surfaces
where they have been reconstructed from, meaning ideally, in the light space, the
depth of the sample point and the interpolated depth of the triangle on the sample
point position should be the same. Due to the precisions lost in the floating point
arithmetic operations, these two depth values become different in an unpredictable
way. So we might not be able to determine the shadows correctly by comparing the
depth values between the sample points and the triangles.

6.1.2 Biasing

Similar to the common fix we used in conventional shadow mappings, these artifacts
can be easily eliminated by applying a biasing during the depth comparison. In our
case, only a very small biasing value is needed, because we only need to compensate
the small precision errors, and there are no spatial deviations in each sample of our
irregular shadow map [AL04].

Not like the side affects we get by biasing the depth comparison in conventional
shadow mappings where the shadows are sometime pushed off the object as if it is
floating, the side effects potentially introduced by the biasing are barely perceivable
in our shadows.

6.1.3 View Frustum Adjustment

Another aspect to keep the shadow generation in a good shape is to properly adjust
the camera-view frustum.

The reconstruction of the sample points is dependent on the depth values generated
in the camera space. The depth values are mapped to the range between 0 and 1 in
a logarithmic scale. In order to let the sample points take up a bigger range of the
depth value so they can be reconstructed more precisely, the far and near planes of
the camera-view frustum need to be put close to each other as much as possible.

Especially when the far plane is exposed in the camera-view, if the far plane is
unnecessarily located far behind the rest of the scene, the sample point distribution
becomes terribly unbalanced. Not only the sample points’ reconstruction becomes
unreliable, but also the performance of the rasterizer is jeopardized.
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6.1.4 Is Single Precision Floating Point Enough?

The entire rasterization process is implemented using single precision floating point
operations. Although it causes artifacts, they can be easily removed. So there is
no need to employ double precision floating point operations, which will lead to
considerable performance degradation.

6.2 Shadow Quality

We simply want to demonstrate the rendering quality of our irregular shadow map-
ping by making a comparison with the conventional shadow mapping. Figure 6.2
shows a few pictures rendered by two different shadow generation approaches. All
pictures are rendered from the same camera position in the same scene, and the
same light position is shared by both methods. In order to improve the shadow
quality of the conventional shadow mapping, different shadow map resolutions are
used and compared. One can tell from the picture until the resolution of the con-
ventional shadow map has increased to its maximum size possible (8192 × 8192),
the rendering qualities of the two methods seem to be comparable (Figure 6.2a to
Figure 6.2f).

But can we always achieve a comparable shadow quality in conventional shadow
mappings by increasing the resolution? Actually, if we zoom in to the shadows,
there is always a difference. Figure 6.3 shows two pictures rendered by the two
shadow mapping approaches for the same scene but at a different camera position.
The camera is moved closer to a small part of the shadow we just showed. Because
irregular shadow maps are always adapted to the view, the quality of the shadow is
always maintained regardless where we are looking at. Conventional shadow maps
are always fixed. So if only we zoom in closely enough, artifacts are always noticeable
unless the shadow map is perspectively adjusted to the camera view dynamically.
It is always possible to construct cases where conventional shadow maps will fail for
a finite resolution.

Thoughts on Shadow Volumes

We have not talked about shadow volumes [Cro77] so far, but it is definitely worth to
mention. The shadow volumes algorithm takes advantage of the hardware rasterizer
on GPUs, but the overheads are the detection of the silhouette edges and the building
of the shadow volumes each frame.

One interesting fact is that the Z-pass or Z-fail tests performed in shadow volumes
are actually equivalent to the irregular rasterization in irregular shadow mapping.
It is exactly how the irregular rasterization looks like from the camera point of view.
For both approaches, the basic ideas of the visibility tests are the same. There-
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(a) Irregular: 512× 512 (b) Regular: 512× 512

(c) Regular: 1024× 1024 (d) Regular: 2048× 2048

(e) Regular: 4096× 4096 (f) Regular: 8192× 8192

Figure 6.2. Shadow Quality Comparison



62 Chapter 6 Results

(a) Irregular 512× 512 (b) Regular 8192× 8192

Figure 6.3. Shadow Quality Comparison: Zoom in

fore, in comparison with irregular shadow mapping, the shadow volumes algorithm
is essentially more of a compromise to make use of the regular rasterization hard-
ware; the downside of irregular shadow mapping is the lack of support from existing
hardware.

Then it comes to the question:“ For what cases does one solution outperform the
other?” It is hard to draw a concrete conclusion here. But for very complex shadows,
it could be complicated to compute the right silhouette edges and build correspond-
ing shadow volumes; irregular shadow mapping is more of a concern about the load
balancing and the performance of the software rasterizer.

6.3 Performance

Besides, a better performance is the real goal of our work. It has to be fast enough
to be used in real-time rendering. Otherwise our work is of no interest to people.

We have discussed many aspects that may affect the performance of our system.
Due to the irregularity of the data structure and the unbalanced workload, the
overall performance of our irregular rasterizer varies as the view changes. We have,
however, tried to minimize the fluctuation as much as we possibly can by applying
techniques like triangle culling and dynamic unit configuration.

Figure 6.4 shows two models we tested with our irregular rasterizer. The resolution
remains the same (512×512), atomic operation binning is used, and kernel1 is cho-
sen in order to present the best performance we have. The first model (Figure 6.4a)
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(a) 24 Cell Tesseract 123K Tris 90 fps (b) Yeah Right! 190K Tris 65 fps

Figure 6.4. Irregular Rasterizer Performance on Geforce GTX 260

is a 24 cell tesseract which contains 123K triangles. The average performance we
achieved was around 90 fps. If we put these two numbers together, the throughput
of our irregular rasterizer was 11.1 million triangles per second. The second one
(Figure 6.4b) has around 190K triangles, and the average performance we had was
64 fps, which give a throughput of 12.4 million triangles per second.

By looking at the performance figures pointed above, we are convinced that our
irregular rasterizer is capable of carrying out real-time rendering tasks.

6.4 Soft Shadows

Up until now, we have been focused on hard shadows. Here, we discuss the possi-
bilities to extend our work to generate soft shadows.

Gregory S. Johnson, the original author of the irregular Z-buffer algorithm, and
others have discussed about soft shadow generations using irregular shadow map-
ping [JHH+09]. The basic idea can be summarized as follows (Figure 6.5): when
rasterizing one sample point, we keep track of the minimum and maximum depth
values of the shadow occluder on the sample point position. By comparing the two
depth values, we can somehow detect the silhouette of the occluder, and determine
whether the sample point is in the penumbra or the umbra of the shadow. Then
instead of generating a stencil value, a factor indicating the darkness of the shadow
can be given for each sample point. When all the darkness factors of all the sample
points are collected, soft shadows can be rendered eventually.
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Figure 6.5. Soft Shadows

Comparing to kernel1, kernel2 does not provide the best performance but is easier
to extend for soft shadow generations. And that was the main reason why we kept
kernel2 as an alternative solution. In kernel2, the granularity of each thread
within a unit covers the entire rasterization process of the sample point set assigned
to this thread. Therefore, each pair of the minimum and maximum depth values
can be calculated internally by a thread.

In addition, due to the time limitation of our work, kernel2 is not fully optimized
yet. For instance, we could potentially build the same 2D uniform grid for the
triangle data, and the grid dimensions should be matching with the one we built
for the point data. By doing this, the triangle loops within each unit are further
reduced.

We propose the extension of soft shadow generations and further optimizations of
kernel2 as future work of our master thesis.
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6.5 Conclusion

In this master thesis work, we managed to implement a fast triangle rasterizer using
an irregular Z-Buffer algorithm entirely on GPUs. We were able to overcome various
issues we met and designed the rendering system that generates high quality shadows
with a satisfactory performance. Potential extension of our work is also discussed.
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